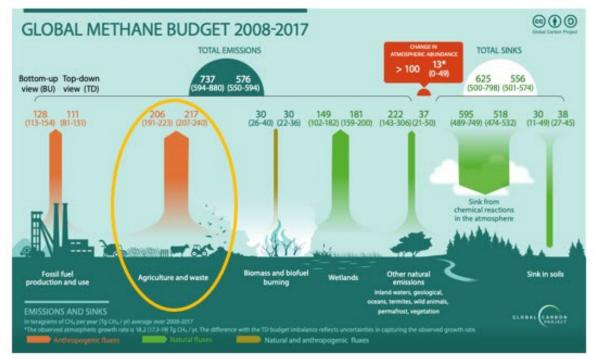
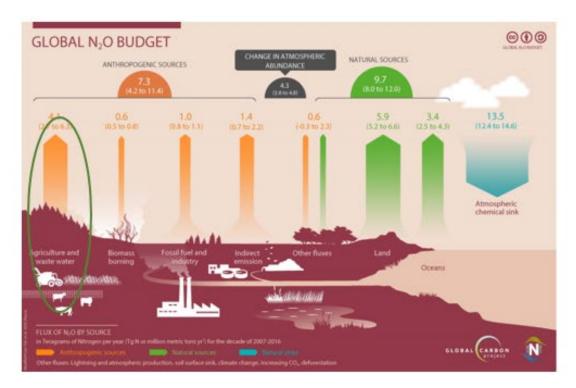
Greenhouse gas emissions and Water quality from irrigated crop ecosystem

M. Arlene Adviento-Borbe

Research Agronomist, Lead Scientist USDA-ARS GRA PRRG-America Subgroup Delta Water Management Research Unit, USDA-ARS Jonesboro, AR, USA, 72401 Email: arlene.advientoborbe@usda.gov Phone: 1.870.253.3130


XIV International Conference of Rice for Latin America and the Caribbean

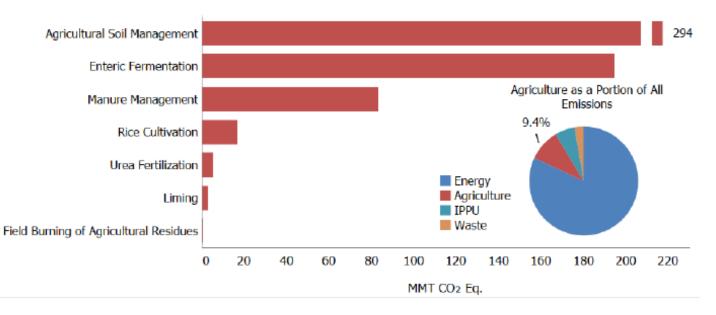


DELTA WATER MANAGEMENT Research Unit

Global CH₄ and N₂O budget

- Agriculture and waste contributed 206 or 217 million ton CH₄
- Rice cultivation contributed about 30 million ton CH₄ yr⁻¹; ca.
 8% of total global anthropogenic emissions.

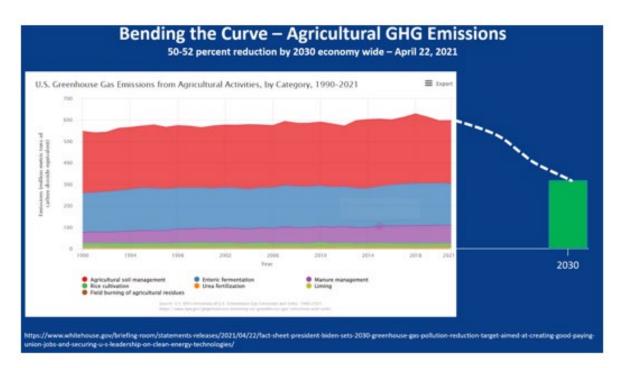
- N₂O comes equally with natural (60%) and anthropogenic (40%) sources.
- Agriculture is the largest direct human source over half of total N₂O emissions.
- 75% of total emissions come from synthetic fertilizers.


Greenhouse gas emissions – U.S. emissions by source

In 2021, all US Agricultural GHG emissions represent 10% of US emissions (598 MMT CO_2 eq.)

- CH₄ emissions constitute 47% of total emissions
 - 70% from Enteric fermentation
 - ~6% from rice cultivation (estimates were based on surrogate data method)
- N₂O emissions account for 7% of US GHG emissions
 - Agricultural soils account for 70% of US N₂O emissions

 $CH_4 \Rightarrow$ is >80 times more potent than CO_2 over 20-yr lifetime,


 \Rightarrow reducing CH₄ is likely the **biggest** and **fastest** way to address climate crisis over the next 20 years.

2021 US Agriculture Sector Greenhouse gas emission Sources.

Source: USEPA.gov

U.S. Climate change goals

- The United States has made a net-zero GHG economy wide commitment to be achieved by 2050 to avoid the worst effects of climate crisis.
- The US commits to economy-wide target of reducing its net GHG emissions by 50-52% relative to 2005 levels in 2030.
- Achieving these climate goals will take ambitious activities in the next 6 years and require engagement and action among agencies.

Changes within the US agricultural sector

ANIMAL AGRICULTURE

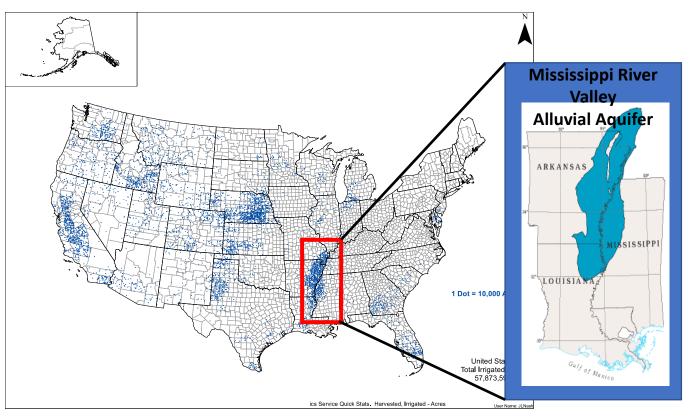
- Implementation of anaerobic digesters
- Covers on anaerobic lagoons
- Improved and rotational grazing in millions of acres
- Commercially available and wide adoption of improved feed management and effective feed additives

CROPLANDS

- Adoption of conservation tillage to millions new acres and reduce field pass intensity
- Implementation of cover cropping, double cropping and reducing dry land fallow
- Smart fertilizers: enhanced efficiency fertilizers, N inhibitors and variable rate application
- New vegetative buffers, wind breaks and grassland conservation
- Reduce the frequency and duration of flooding of rice paddies

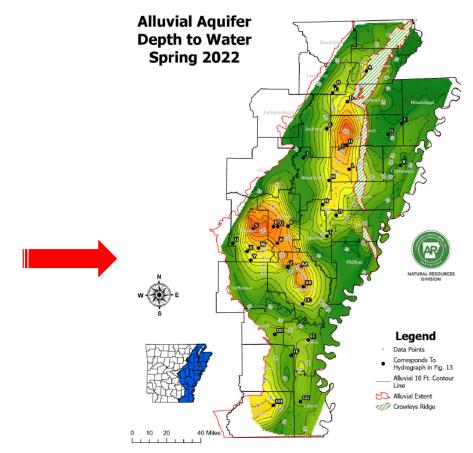
Opportunities: crop management strategies to reduce GHG emissions

Agronomic practices	Impact on GHG emission	Remarks
	emission	
Low inorganic N fertilizer rates (~79 kg N ha ⁻¹)	↑18% CH ₄	Relative to 0 kg N ha ⁻¹
High inorganic N fertilizer rates (~249 kg N ha ⁻¹)	↓15% CH₄	Relative to 0 kg N ha ⁻¹
Ammonium sulfate	↓40% CH ₄ ↑ N ₂ O	Replacing Urea at same N rate
Dicyandiamide, (DCD) Nitrification inhibitor	↓18% CH₄ ↓25% N₂O	
Deep placement of N fertilizer	↓CH₄ ↑ N ₂ O	
Farmyard manure	↑26% CH ₄	Compared to same inorganic N rate
Green manure Sesbania	个192% CH₄	Compared to same inorganic N rate
Sulfate fertilizers (208 kg S ha ⁻¹)	↓ 28% CH₄	
Sulfate fertilizers (992 kg S ha ⁻¹)	↓53% CH₄	
Water saving irrigation practice AWD	↓48-93% CH₄ ↑ N ₂ O	Variable % water content threshold for re- flooding
Rice varieties Hybrids vs Inbreeds	???	Depends on environmental conditions


Crop management strategies to reduce GHG emissions

	Agronomic practices	Impact on GHG emission	Remarks
100		-	
	Low inorganic N fertilizer rates (~79 kg N ha ⁻¹)	个18% CH₄	Relative to 0 kg N ha ⁻¹
T	High inorganic N fertilizer rates (~249 kg N ha ⁻¹)	↓15% CH₄	Relative to 0 kg N ha ⁻¹
	Ammonium sulfate	↓40% CH ₄ ↑ N ₂ O	Replacing Urea at same N rate
K	Dicyandiamide, (DCD) Nitrification inhibitor	↓18% CH₄ ↓25% N₂O	
	Deep placement of N fertilizer	↓CH₄ ↑ N2O	
1	Farmyard manure	↑26% CH ₄	Compared to same inorganic N rate
1. A	Green manure Sesbania	个192% CH₄	Compared to same inorganic N rate
	Sulfate fertilizers (208 kg S ha ⁻¹)	↓28% CH4	
	Sulfate fertilizere (992 kg S ha ⁻¹)	↓53% CH4	
	Water saving irrigation practice AWD	↓48-93% CH₄ ↑ N₂O	Variable % water content threshold for re- flooding
	Rice varieties Hybrids vs Inbreeds	???	Depends on environmental conditions

RESEARCH LINIT


Declining groundwater in the Mississippi River Delta region

- Arkansas is third in the US for irrigated areas.
- Mississippi River Valley Alluvial Aquifer (MRVAA) is the primary source of irrigation water (≥80%)
- In 2018, aquifer sustainable recharge was 3,374 Mgal day⁻¹ but pumping during same year was

2 times than the recharge rate, thus created declined in groundwater.

• Rice accounts for about half groundwater use and received about 3 times the irrigation that is applied to maize and soybean.

- Two cones of depression in Grand Prairie and Cache regions
- 30-36 m (100-120 ft) alluvial aquifer depth to water

AWD & Furrow Irrigated Rice/Row rice

20 Se 15 10 5 0 2015 2016 2017 2018 2019 2020

Hardke 2020, 2021

- Rapidly gaining popularity in Mid- South
 - due to reduced labor cost, time and efforts for land preparation
 - increased flexibility in responding to changing market and weather conditions
- Reduction in irrigation water use
 - 13-54 % of water savings

Furrow irrigated rice areas in Arkansas

Average seasonal GHG emissions and yields in Arkansas and California rice fields under different irrigation systems:

State	Irrigation practice	Methane, CH ₄	Nitrous oxide, N₂O	Global warming potential, GWP		Grain yield	% CH ₄ reduction relative to Flooded irrigation	% N ₂ O increase relative to Flooded irrigation
		kg CH₄-C ha⁻¹ season⁻¹	kg N2O-N ha ⁻¹ season ⁻¹	kg CO2eq ha ⁻¹ season ⁻¹	kg CO₂eq ton⁻¹ season⁻¹	Ton ha ⁻¹ (bu ac ⁻¹)		
				Area-scaled Yield-scaled				
Arkansas	Continuously Flooded	70.7	0.04	2,472	248	9.7 (192)		
	AWD	21	0.16	802	81	9.8 (195)	√71%	个4x
	Continuously Flooded	55.9	0.15	2,116	179	11.9 (235)		
	Furrow irrigation	11	2.90	1,638	161	10.4 (205)	↓81%	↑20x
California	Continuously Flooded	205	-0.05	7,622	694	11.0 (218)		
	AWD	78	-0.06	2,876	266	11.0 (217)	√62%	-

<u>Yield-scaled GWP</u> : kg CO_2 equivalent of CH_4 and N_2O emissions per ton of yield

$$GWP_{N_2O,CH_4} = \left(\frac{kg N_2O}{ha \cdot season} \times 273\right) + \left(\frac{kg CH_4}{ha \cdot season} \times 27.2\right)$$

Seasonal GHG emissions and yields between inbred and hybrid cultivars under intermittent irrigation

Irrigation practice	Cultivar	Methane, CH ₄	Nitrous oxide, N ₂ O	Global warming potential, GWP		Grain yield	% CH ₄ reduction relative to *Inbred
		kg CH ₄ -C ha ⁻¹	kg N₂O-N ha⁻¹	kg CO ₂ eq ha ⁻¹	kg CO ₂ eq ton ⁻¹	Ton <u>ha⁻¹</u>	
		season ⁻¹	season ⁻¹	season ⁻¹	season ⁻¹	(bu <u>ac⁻¹)</u>	
				Area-scaled	Yield-scaled		
AWD	CL151*	39	0.50	1,682	191	8.0 (158)	
	XP753	37	0.15	1,434	156	10 (198)	
	XP760	38	0.10	1,454	156	11 (218)	
	CLXL745	21	0.17	872	101	9.0 (178)	√46%
Furrow irrigation	CLL15*	14	1.11	979	117	8.5 (178)	
	RT7321	12	0.88	791	69	12 (234)	
	RT7521 FP	6	0.72	513	44	12 (234)	√59%

*Inbred cultivars

• **52%** average reduction of CH₄ emissions in **high-yielding hybrids** compared to inbred CH₄ emissions

Average seasonal CH_4 and N_2O emissions for rice region for growing and non-growing seasons.

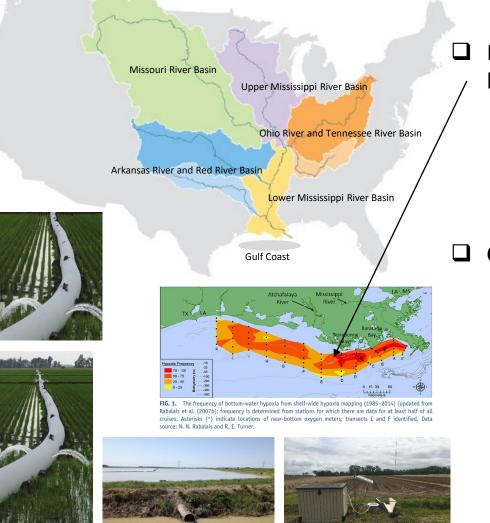
Region	Studies	Growing se emissions	ason CH ₄	 Non-growing season CH₄ emissions 		Studies	Growing season N ₂ O emissions		Non-growing season N ₂ O emissions	
		Weighted Average	Range	Weighted Average	Range		Weighted Average	Range	Weighted Average	Range
		kg CH ₄ ha ⁻¹ season ⁻¹				kg N ₂ O ha ⁻¹ season ⁻¹				
California	7/5	218	67 – 446	79	10 – 215	3/3	0.15	-0.17 – 0.66	0.65	0.20 – 2.24
Mid-South (Main Crop)	17/1	194	9 – 510	0.63	0.24 - 1.08	3/1	0.13	0.06 - 0.17	1.96	1.47 – 2.41
Mid-South (Ratoon)	1/na	540	468 – 629	-	-	na	na	na	na	na

na = no available data

SOURCE: Linquist, B.A., Marcos, M., Adviento-Borbe, M.A.A., Anders, M., Harrell, D. Linscombe, S., Reba, M., Runkle, B., Tarpley, L., Thompson, A. 2018. Greenhouse gas emissions and management practices that affect emissions in US rice systems. J Environ. Qual. 47:395-409.

Actual GHG emissions in Arkansas: CH₄: 70 (6 - 141) N₂O: 0.32 (0.0 - 1.3)

Water quality in US agricultural systems: The Mississippi River Watershed

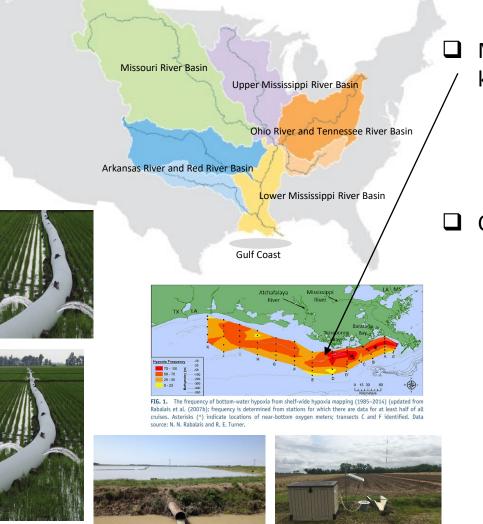


- □ 4th largest watershed in the world, and drains over about half of the US total area (31 states and 2 Canadian provinces)
- Provides \$50 billion in agricultural products and 25% of America's total hydropower
- □ 100 million people live in the basin
- □ Water quality is degraded due to nonpoint source pollution
 - <u>Excessive nutrients (N and P loading)</u> synthetic fertilizer, manure, legume crops, human sewage & atmospheric deposition
 - <u>Sediment load into river</u> erosion from agricultural lands, natural erosion, riverbank erosion

Water quality in US agricultural systems: The Mississippi River Watershed


Main outcome is **Hypoxia or Dead zone in Northern Gulf of Mexico** (11,259 km²)

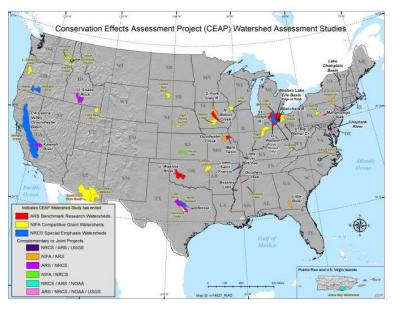
– oxygen level if <2 mg/L caused by eutrophication from excess N and
 P nutrients loads from agriculture, N fixation and atmospheric
 deposition


Contemporary strategies to improve water quality:

 Best management practices – i.e. Reduced/No till, vegetative cover, riparian zone

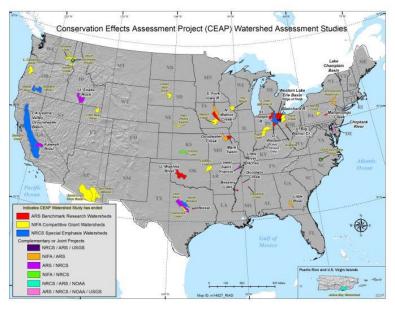
Contemporary management strategies to improve water quality

Water quality in US agricultural systems: The Mississippi River Watershed

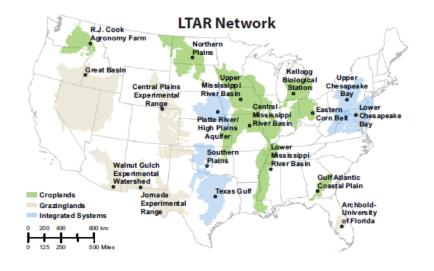

Main outcome is **Hypoxia or Dead zone in Northern Gulf of Mexico** (11,259 km²)

 oxygen level if <2 mg/L caused by eutrophication from excess N and P nutrients loads from agriculture, N fixation and atmospheric deposition

Contemporary strategies to improve water quality:

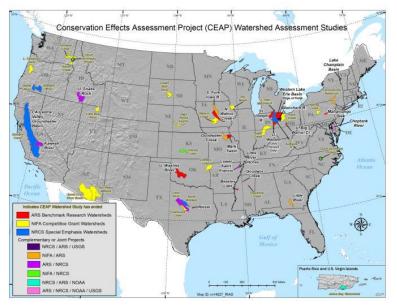

- Best management practices i.e. Reduced/No till, vegetative cover, riparian zone
- Incorporation of social component stakeholders involvement, adoption
- Field- and watershed-scale monitoring and evaluation water quality index, models
 - Conservation Effects Assessment Program, CEAP US NRCS
 - Long-Term Agroecosystem Research, LTAR USDA-ARS
 - Mississippi River Basin Healthy Watershed Initiative, MRBI US NRCS

Water quality in US agricultural systems: Field- and watershed-scaled monitoring and evaluation

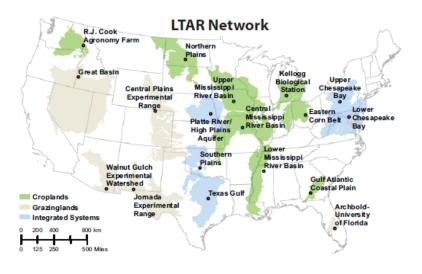


- 1. Conservation Effects Assessment Program, CEAP – NRCS
- Established in 2003 (2002 Farm Bill fund)
- Multi agency effort led by Natural Resources Conservation Service (NRCS)
- National/Regional Assessment: cropland, grazing lands, wetlands, wildlife, watersheds
- Goal is to improve efficacy of conservation programs thru science and education
- <u>https://www.nrcs.usda.gov/ceap</u>

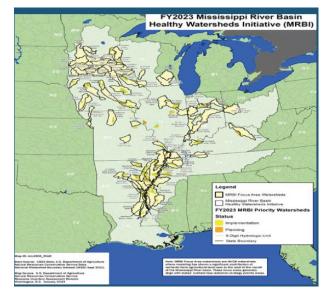
Water quality in US agricultural systems: Field- and watershed-scaled monitoring and evaluation



- 1. Conservation Effects Assessment Program, CEAP – NRCS
- Established in 2003 (2002 Farm Bill fund)
- Multi agency effort led by Natural Resources Conservation Service (NRCS)
- National/Regional Assessment: cropland, grazing lands, wetlands, wildlife, watersheds
- Goal is to improve efficacy of conservation programs thru science and education
- <u>https://www.nrcs.usda.gov/ceap</u>



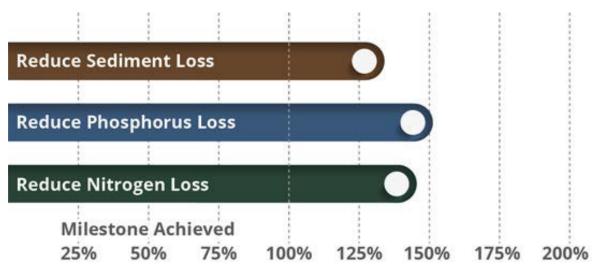
- 2. Long-Term Agroecosystem Research, LTAR – USDA
- 18 research sites, conducted in 1910
- Represents a range of major US agroecosystems i.e. cereal, forage, livestock production
- Goal is to develop and to share science-based findings to producers and stakeholders
- https://ltar.ars.usda.gov/network/


Water quality in US agricultural systems: Field- and watershed-scaled monitoring and evaluation

- 1. Conservation Effects Assessment Program, CEAP – NRCS
- Established in 2003 (2002 Farm Bill fund)
- Multi agency effort led by Natural Resources Conservation Service (NRCS)
- National/Regional Assessment: cropland, grazing lands, wetlands, wildlife, watersheds
- Goal is to improve efficacy of conservation programs thru science and education
- <u>https://www.nrcs.usda.gov/ceap</u>

- 2. Long-Term Agroecosystem Research, LTAR – USDA
- 18 research sites, conducted in 1910
- Represents a range of major US agroecosystems i.e. cereal, forage, livestock production
- Goal is to develop and to share science-based findings to producers and stakeholders
- <u>https://ltar.ars.usda.gov/network/</u>

3. Mississippi River Basin Healthy Watershed Initiative, MRBI – NRCS


- 12 states, established in 2009
- Focus on agricultural farms
- Goal is to improve water quality and ensure viability of agricultural lands
- <u>https://www.nrcs.usda.gov/programs-initiatives/mississippi-grams-initiatives/mississippi-niver-basin-healthy-watersheds-initiative</u>

Mississippi River Basi Healthy Watershed Initiatives: Outcomes

2023 Milestones

Reduce Sediment Loss (tons)						
Milestone	Milestone Achieved Percentage Toward Milestone					
2,410,200	3,129,839 130%					
*2,751,836 tons reduced in FY 2010-2022; 378,003 tons in FY 2023						
Reduce Phosphorus Loss (lbs)						
Milestone	Achieved Percentage Toward Milestone					
4,849,300	,300 7,337,759 151%					
*6,455,965 lbs reduced in FY 2010-2022; 881,794 lbs in FY 2023						
Reduce Nitrogen Loss (Ibs)						
Milestone	Milestone Achieved Percentage Toward Milestone					
18,596,100 26,410,036 142%						
*23,159,273 lbs reduced in FY 2010-2022; 3,250,763 lbs in FY 2023						

Data source: FPAC Economics and Policy Analysis Division, January 2024

- Critical source of area for treatment: CEAP Soil Vulnerability Index (SVI)
- ID soils vulnerable to runoff loss of sediment and nutrients on cropland.
- Tracking conservation implementation on critical areas is one way to meet water quality objectives
- Highest SVI treated = 43%

Concluding thoughts

□ Multiple benefits can be achieved in integrated practices when implemented properly.

GHG emissions

- Rice: greatest reduction of CH₄ emissions occurred in non-continuous flooding practice
- Tradeoff between CH₄ and N₂O emissions can be observed, thus need to manage irrigation and N fertilization effectively.
- Integrated mitigation approach that further reduce GHG emissions without yield penalty is a win-win strategy for growers

Water quality

- Soluble N/P and soil sediments are main pollutants in runoff water from agriculture.
- Current strategies to improve water quality in the US are underway.
 - Best management practices (BMP) for maximum pollution reduction
 - Long-term assessment and research on conservation practices to develop national roadmap for sustainable intensification of agricultural production.

Challenges involved under a climate crisis

- Complexity of system variability in climate, soil, farming system, available resources, cultural practices, farmer's adoption
- Limited long-term BMPs performance over time thru monitoring and evaluation
- Climate change and growing human population

AIM for Climate

Launched at COP26, the Agriculture Innovation Mission for Climate is an initiative co-led by the United Arab Emirates and the United States that seeks to enable global partnerships and solutions at the intersection of agriculture and climate change. The UAE, AIM for Climate co-lead and the incoming COP28 Presidency, has identified AIM for Climate as a leading platform to advance food and agriculture's contributions to COP28.

Impact:

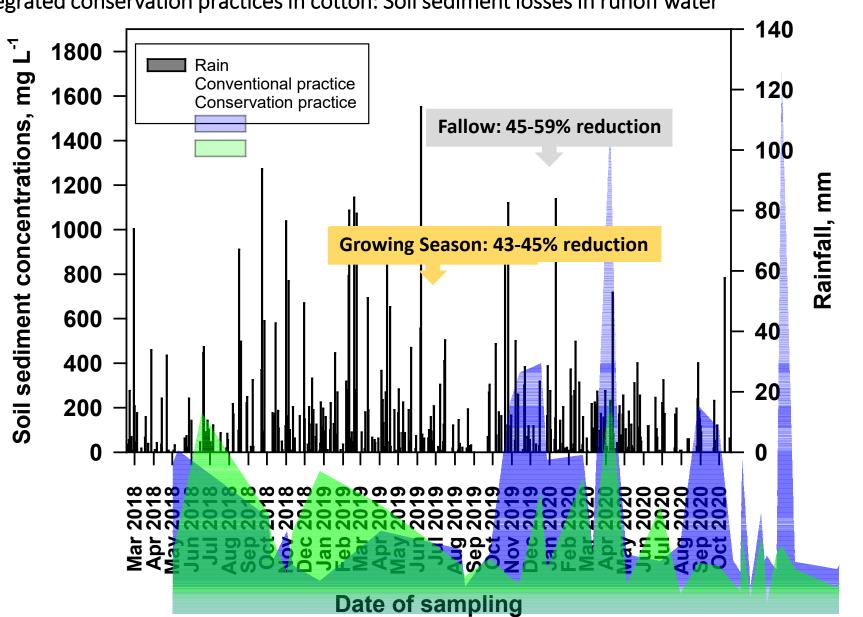
\$13 billion

Increased investment in climate-smart agriculture and food systems innovation by public and private-sector partners. Responsibility, control, and oversight of investments remains with participants.

Over 500 partners - Join Us!

Includes 50 government and over 450 non- government partners. AIM for Climate amplifies partners investments and acts as convening and networking platform.

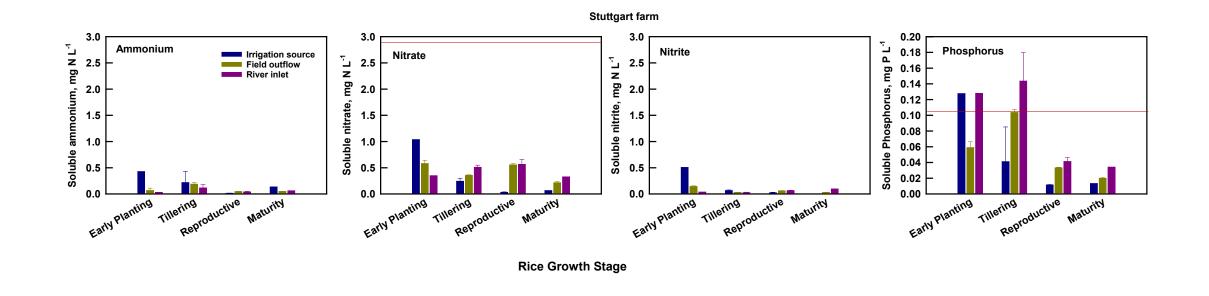
Pictured: 42 government partner delegations attended the AIM for Climate Summit in Washington, D.C., May 8-10, 2023


Website: www.AIMforClimate.org Twitter: @AIMforClimate

Thank you!

"Climate change is one of the biggest challenges humanity has ever faced – but with human ingenuity and innovation we can avoid a climate disaster."

– Bill Gates



Conventional practice

Integrated conservation practices in cotton: Soil sediment losses in runoff water

Average concentrations of soluble N and P in runoff water at various growth stage of irrigated paddy rice

- Soluble nitrate mainly comprised the most losses in runoff water among nutrients.
- Large runoff losses occurred during early to tillering growth stage of rice
- Background P nutrient limit set by USEPA for the Delta region showed less likely to impair rivers and lakes.